散列

[toc]

散列

一般想法

每个key都能完美的映射到表中.

散列函数

不存在完美的映射, 需要一个高效的函数 p = f(key). f称为散列函数. 通常, 关键字是一个字符串, 散列函数需要很好的选择

  1. 把字符串中字符的ASCII码或UniCode码的值加起来

    //缺陷, 如果表很大, 函数将会不好分配, 例如key最多8个字符, 那么散列函数最多分配 127 * 8 = 1016 之间.
    public static int hash(String key, int tableSize) {
     int hashVal = 0;
     for(int i = 0; i < key.length; i ++) &#123;
       hashVal += key.charAt(i);
     &#125;
     return hashVal % tableSize;
    &#125;
    
  2. 一个稍微好的散列函数

    
    public static int hash(String key, int tableSize) &#123;
     int hashVal = 0;
     for(int i = 0; i < key.length; i ++) &#123;
       hashVal = 37 + hashVal + key.charAt(i);
     &#125;
     hashVal %= tableSize;
     //允许溢出
     if(hashVal < 0) &#123;
       hashVal += tableSize;
     &#125;
     
     return hashVal;
    &#125;
    

    Hornor 法则:有一些关于多项式求值的问题。对于多项式求值问题,我们最容易想到的算法是求出每一项的值然后把所求的值累加起来,这种算法的时间和空间效率都不高,对于数据规模不大的题目来说由于其直观、简单很容易被大家采纳,可一旦数据规模过大时,这种算法就显得无能为力了,下面介绍一种解决这类求值问题的高效算法――霍纳法则。在中国,霍纳法则也被称为秦九韶算法。

Java中HashCode的实现

/**
     * Returns a hash code for this string. The hash code for a
     * &#123;@code String&#125; object is computed as
     * <blockquote><pre>
     * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]  //多项式求和
     * </pre></blockquote>
     * using &#123;@code int&#125; arithmetic, where &#123;@code s[i]&#125; is the
     * <i>i</i>th character of the string, &#123;@code n&#125; is the length of
     * the string, and &#123;@code ^&#125; indicates exponentiation.
     * (The hash value of the empty string is zero.)
     *
     * @return  a hash code value for this object.
     */
    public int hashCode() &#123;
        int h = hash;
        if (h == 0 && value.length > 0) &#123;
            char val[] = value;

            for (int i = 0; i < value.length; i++) &#123;
                h = 31 * h + val[i];
            &#125;
            hash = h;
        &#125;
        return h;

一个有趣的讨论

Why does Java’s hashCode() in String use 31 as a multiplier?

结论推测为早期的JVM优化31作为乘子可以优化 i* 31 = (i << 5) - i , 不过随着现代编译器的性能优化, 这个可能也不算是一个非常大的问题.

解决冲突: 分离链法

将散列到同一个值的所有元素保存到一个表中.

HashMap的源码解读

基本构成

public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable&#123;&#125;
//继承自AbstractMap实现了Map的接口
//节点 理论上是一个链表中的节点.
static class Node<K,V> implements Map.Entry<K,V> &#123;
        final int hash;
        final K key;
        V value;
        Node<K,V> next; //冲突 桶中指向下一个节点.

        Node(int hash, K key, V value, Node<K,V> next) &#123;
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        &#125;

        public final K getKey()        &#123; return key; &#125;
        public final V getValue()      &#123; return value; &#125;
        public final String toString() &#123; return key + "=" + value; &#125;

        public final int hashCode() &#123;
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        &#125;

        public final V setValue(V newValue) &#123;
            V oldValue = value;
            value = newValue;
            return oldValue;
        &#125;

  /**
      Key 和value 都相等才相等. (比较两个节点.)
  */
        public final boolean equals(Object o) &#123;
            if (o == this)
                return true;
            if (o instanceof Map.Entry) &#123;
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true; 
            &#125;
            return false;
        &#125;
    &#125;

//TreeNode  待定 后续讲到Java8 将桶优化为红黑树再详细说明.
//定义的一些常量
 /**
     * The load factor for the hash table.
     *    加载因子是表示Hsah表中元素的填满的程度.若:加载因子越大,填满的元素越多,好处是,空间利用率高了,但:冲突的机会加大了.反之,加载因子越小,填满的元                素越少,好处是:冲突的机会减小了,但:空间浪费多了.
     * @serial
     */
    final float loadFactor;
 /**
     * The next size value at which to resize (capacity * load factor).
     *
     * @serial
     */
    // (The javadoc description is true upon serialization.
    // Additionally, if the table array has not been allocated, this
    // field holds the initial array capacity, or zero signifying
    // DEFAULT_INITIAL_CAPACITY.)
    int threshold;

//定义的一些常量

    /**
     * The default initial capacity - MUST be a power of two. 默认的初始化容量 必须是2的指数个
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

 /**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<30.  最大容量
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;
/*
1 << 32 = 1
1 << 31 = -2147483648
1 << 30 = 1073741824
*/


 /**    
     * The bin count threshold for using a tree rather than list for a
     * bin.  Bins are converted to trees when adding an element to a
     * bin with at least this many nodes. The value must be greater
     * than 2 and should be at least 8 to mesh with assumptions in
     * tree removal about conversion back to plain bins upon
     * shrinkage.
         桶的形态发生改变的阈值. 链表向树形态变换的临界值
     */
    static final int TREEIFY_THRESHOLD = 8;


  /**
      桶的形态发生改变的阈值. 树向链表形态变换的临界值
     * The bin count threshold for untreeifying a (split) bin during a
     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
     * most 6 to mesh with shrinkage detection under removal.
     */
    static final int UNTREEIFY_THRESHOLD = 6;


 /**
         TODO explain 
     * The smallest table capacity for which bins may be treeified.
     * (Otherwise the table is resized if too many nodes in a bin.)
     * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
     * between resizing and treeification thresholds.
     */
    static final int MIN_TREEIFY_CAPACITY = 64;



        /*
     * Holds cached entrySet(). Note that AbstractMap fields are used
     * for keySet() and values().
     */
    transient Set<Map.Entry<K,V>> entrySet;



    /**
        HashMap的桶
     * The table, initialized on first use, and resized as
     * necessary. When allocated, length is always a power of two.
     * (We also tolerate length zero in some operations to allow
     * bootstrapping mechanics that are currently not needed.)
     */
    transient Node<K,V>[] table;

 /**
     * The number of key-value mappings contained in this map.
     */
    transient int size;

    /**
     * The number of times this HashMap has been structurally modified
     * Structural modifications are those that change the number of mappings in
     * the HashMap or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the HashMap fail-fast.  (See ConcurrentModificationException).
     */
    transient int modCount;

构造函数

 /**
     * Constructs an empty <tt>HashMap</tt> with the specified initial
     * capacity and load factor.
     *
     * @param  initialCapacity the initial capacity  2的指数次幂个.
     * @param  loadFactor      the load factor
     * @throws IllegalArgumentException if the initial capacity is negative
     *         or the load factor is nonpositive
     */
    public HashMap(int initialCapacity, float loadFactor) &#123;
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    &#125;

 /**
     * Constructs an empty <tt>HashMap</tt> with the specified initial
     * capacity and the default load factor (0.75).
     *
     * @param  initialCapacity the initial capacity.
     * @throws IllegalArgumentException if the initial capacity is negative.
     */
    public HashMap(int initialCapacity) &#123;
        this(initialCapacity, DEFAULT_LOAD_FACTOR); //  3/4 * 16 = 12个
    &#125;



 public HashMap() &#123;
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    &#125;

 public HashMap(Map<? extends K, ? extends V> m) &#123;
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    &#125;

hash函数的原理解释, 可以参考hash函数的原理解读

/**
     * Computes key.hashCode() and spreads (XORs) higher bits of hash
     * to lower.  Because the table uses power-of-two masking, sets of
     * hashes that vary only in bits above the current mask will
     * always collide. (Among known examples are sets of Float keys
     * holding consecutive whole numbers in small tables.)  So we
     * apply a transform that spreads the impact of higher bits
     * downward. There is a tradeoff between speed, utility, and
     * quality of bit-spreading. Because many common sets of hashes
     * are already reasonably distributed (so don't benefit from
     * spreading), and because we use trees to handle large sets of
     * collisions in bins, we just XOR some shifted bits in the
     * cheapest possible way to reduce systematic lossage, as well as
     * to incorporate impact of the highest bits that would otherwise
     * never be used in index calculations because of table bounds.
     */
    static final int hash(Object key) &#123;
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    &#125;
工具

img

    /**
     * Returns a power of two size for the given target capacity.
      此方法用与找到大于等于给定cap最接近的指数幂
     */

    static final int tableSizeFor(int cap) &#123;
 /*
首先,为什么要对cap做减1操作。int n = cap - 1;
这是为了防止,cap已经是2的幂。如果cap已经是2的幂, 又没有执行这个减1操作,则执行完后面的几条无符号右移操作之后,返回的capacity将是这个cap的2倍。如果不懂,要看完后面的几个无符号右移之后再回来看看。
*/
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
      /*
      注意,容量最大也就是32bit的正数,因此最后n |= n >>> 16; ,最多也就32个1(但是这已经是负数了。在执行tableSizeFor之前,对initialCapacity做了判断,如果大于MAXIMUM_CAPACITY(2 ^ 30),则取MAXIMUM_CAPACITY。如果等于MAXIMUM_CAPACITY(2 ^ 30),会执行移位操作。所以这里面的移位操作之后,最大30个1,不会大于等于MAXIMUM_CAPACITY。30个1,加1之后得2 ^ 30)
      */
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    &#125;


/**
 * 初始化或者扩容两倍
 * Initializes or doubles table size.  If null, allocates in
 * accord with initial capacity target held in field threshold.
 * Otherwise, because we are using power-of-two expansion, the
 * elements from each bin must either stay at same index, or move
 * with a power of two offset in the new table.
 *
 * @return the table
 */
final Node<K,V>[] resize() &#123;
    Node<K,V>[] oldTab = table;
      //old capacity
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    //
    int newCap, newThr = 0;
    //如果旧容量大于0
    if (oldCap > 0) &#123;
      //如果旧容量大于等于最大容量。
        if (oldCap >= MAXIMUM_CAPACITY) &#123;
          //
            threshold = Integer.MAX_VALUE;
            return oldTab;
        &#125;
        //如果(newCap = oldCap 的2倍)< 最大容量并且 oldCap >= 初始化容量
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    &#125;
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else &#123;               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    &#125;
    if (newThr == 0) &#123;
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    &#125;
    threshold = newThr;
    @SuppressWarnings(&#123;"rawtypes","unchecked"&#125;)
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) &#123;
      //将oldTab赋值给newTab
        for (int j = 0; j < oldCap; ++j) &#123;
            Node<K,V> e;
            if ((e = oldTab[j]) != null) &#123;
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                  // 将红黑树拆分成链表.
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else &#123; // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do &#123;
                        next = e.next;
                        if ((e.hash & oldCap) == 0) &#123;
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        &#125;
                        else &#123;
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        &#125;
                    &#125; while ((e = next) != null);
                    if (loTail != null) &#123;
                        loTail.next = null;
                        newTab[j] = loHead;
                    &#125;
                    if (hiTail != null) &#123;
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    &#125;
                &#125;
            &#125;
        &#125;
    &#125;
    return newTab;
&#125;

 /**
     * Associates the specified value with the specified key in this map.
     * If the map previously contained a mapping for the key, the old
     * value is replaced.
     *
     * @param key key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     *         (A <tt>null</tt> return can also indicate that the map
     *         previously associated <tt>null</tt> with <tt>key</tt>.)
     */
    public V put(K key, V value) &#123;
        return putVal(hash(key), key, value, false, true);
    &#125;




 /**
     * Implements Map.put and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to put
     * @param onlyIfAbsent if true, don't change existing value
     * @param evict if false, the table is in creation mode.
     * @return previous value, or null if none
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) &#123;
      //桶, 这个就是存储元素的桶 = table (field of class)
        Node<K,V>[] tab;
          Node<K,V> p; 
      
          int n, i;
        //如果
          if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else &#123;
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else &#123;
                for (int binCount = 0; ; ++binCount) &#123;
                    if ((e = p.next) == null) &#123;
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    &#125;
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                &#125;
            &#125;
            if (e != null) &#123; // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            &#125;
        &#125;
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    &#125;

Comments

⬆︎TOP